Area of Operation II - Task C

Visual Scanning and Collision Avoidance

Content

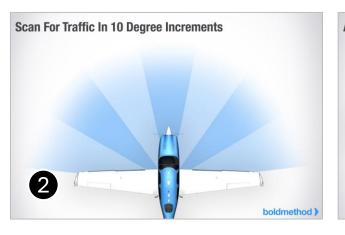
- 1. Introduction
- 2. Visual Scanning
- 3. Clearing Procedures
- 4. Recognizing Hazards
- 5. Collision Avoidance
- 6. Degraded Vision
- 7. Controlled Flight into Terrain (CFIT)
- 8. Spatial Disorientation and Illusions
- 9. Real Cases

Key References:

- Airplane Flying Handbook
- Pilot's Handbook of Aeronautical Knowledge
- Pilot's role in collision avoidance (AC 90-48)

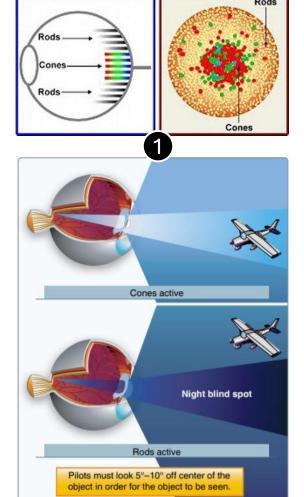
1. Introduction

- What: Learn about the pilot's role in scanning the sky for potential collision threats, and how to do it effectively
- Why: All pilots are bounded by the "see-and-avoid" while in VMC to avoid mid-air collisions
- See and Avoid: <u>§91.113(b)</u>
 - If visual conditions allow (VFR or IFR) \rightarrow Pilot must see and avoid other aircraft
- Right of Way rules: §91.113(c-g)
 - Distress: Aircraft in distress has right-of-way over any other
 - Converging:
 - \checkmark Same category: aircraft to the <u>Right</u> has right-of-way
 - \checkmark Different category: Ballon \rightarrow Glider \rightarrow Airship \rightarrow Airplane/Rotorcraft
 - ✓ <u>Towing/refueling</u> has right-of-way of any other engine-driven aircraft
 - Approaching head-on: both aircraft change course to the Right
 - Overtaking: the aircraft being overtaking has right-of-way (overtakes to the Right)
 - Landing: aircraft on final has right-of-way
 - ✓ If multiple aircraft, lowest altitude has RoW... but shall not take advantage


2. Visual Scanning


Eyes

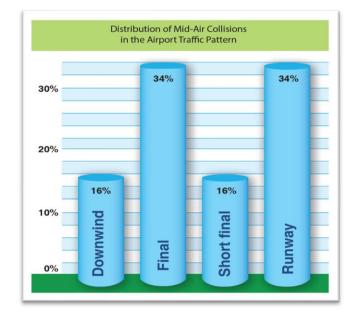
- <u>Cones</u>: ~5M cells (center of the retina, rear of the eye), see colors, high spatial acuity
- o <u>Rods</u>: ~100M cells (peripheral area), no colors, 1000x more sensitive, peripheral/<u>night vision</u>


Effective Scan

- 2 Day: short (at least <u>1 second</u>) and regularly spaced eye movement (<u>10° sector</u>)
- 3 Night: look <u>5-10° off-center</u> (cones are blind spot) and <u>interpret position lights</u>
 - Leverage ADS-B In to <u>enhance</u> situational awareness

3. Clearing Procedures

- Before Takeoff
 - Ensure the <u>runway</u> and <u>final is clear</u> (both approaches in non-towered fields)
- Climbs & Descents
 - Execute gentle banks left and right, and maintain a consistent scan
 - o <u>Momentarily level off</u> to see traffic ahead
- Straight-and-Level
 - Execute <u>clearing turns at periodic intervals</u>, and maintain a consistent scan
- Traffic Patterns
 - Descend to TPA <u>before entering the pattern</u>
 - Maintain a constant visual scan for other aircraft
 - If extending downwind/upwind, <u>let others know</u> and <u>be extra vigilant</u>
 - Ensure <u>no traffic entering downwind</u> "straight-in" before <u>turning crosswind</u>
 - Ensure final is clear before turning base and before turning final
 - Be aware of Instrument flights coming on long final, "opposite" final, and circling opposite pattern
- Be aware of blind spots


4. Recognizing Hazards

• Mid-Air Collisions:

- o Generally occur during daylight hours (most in the afternoon)
- Most mid-air collisions occur <u>under good visibility</u>
- Most likely to occur between two aircraft going in the same direction
- Nearly all accidents occur at or near uncontrolled airports, below 1,000 feet
- Pilots of all experience levels can be involved in mid-air collisions

Hazards to look for:

- Near VORs, training Areas, near airports or scenic areas
- o <u>Blind Spots</u>: Momentarily raise/lower the wing prior to turns/climbs/descents
- Parallel/Multiple runways: overshoot and entering in the other aircraft's path
- <u>Same altitude traffic</u>: use the horizon as reference (above = higher altitude)
- Collision Course:
 - ✓ If no relative movement (+ increasing size in the windscreen)
 - ✓ Traffic alerts from ATC always given based on track (not heading)
 - ✓ Take immediately action (don't become "mesmerized" w/ traffic)

Traffic information would be issued to the pilot of aircraft "A" as 12 o'clock. The actual position of the traffic as seen by the pilot of aircraft "A" would be 1 o'clock. Traffic information issued to aircraft "B" would also be given as 12 o'clock, but in this case, the pilot of "B" would see traffic at 10 o'clock.

5. Collision Avoidance

General Recommendations:

- o <u>Cockpit Management</u>: More preparation and organization allows for more focus outside
- <u>Visual Obstructions</u>: Ensure clear windscreen (do not block it with maps/checklists)
- <u>Be Visible</u>: Use exterior lights, and <u>keep interior lights low at night</u> to preserve night vision
- <u>Resources</u>: Use ATC (flight following for traffic advisories) and ADS-B In whenever possible

• Stay Safe around Airports:

- o Report position <u>10 miles out</u> and <u>listen for reports from other inbound traffic</u>
- Descend to TPA <u>before entering the pattern</u>
- Maintain a constant visual scan for other aircraft
- <u>Use exterior lights</u> to improve the chances of being seen
- At a non-towered airport:
 - ✓ Monitor the correct <u>CTAF</u> (not all aircraft might be communicating)
 - ✓ Follow the proper pattern: 91.126 (class G), 91.127 (class E)
 - ✓ Report entering <u>downwind</u>, <u>turning downwind to base</u>, and <u>base to final</u>
 - ✓ Be aware of Instrument flights coming on long final, "opposite" final, and circling opposite pattern

6. Degraded Vision

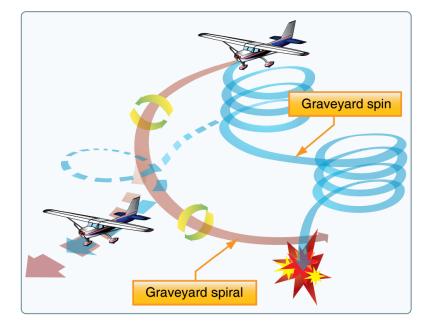
Several factors contributed with reducing the pilot's ability to properly scan

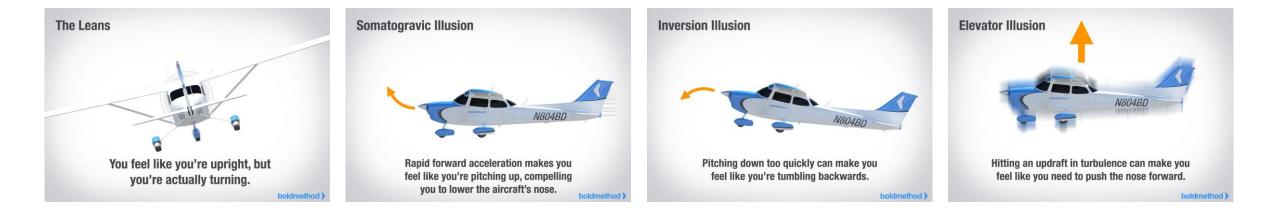
- Environmental
 - Excessive light (glare) causes <u>watering eyes</u>, <u>temporary blindness</u> → use sunglasses and shades
 - Smoke, haze, dust, rain, and flying toward the sun can limit ability to see other aircraft
- Lack of light
 - o Dim Lighting: small print and charts harder to read, taking focus from flying and scanning
 - o Dark adaptation: Takes <u>30 minutes</u> for full adaptation, but <u>only a few seconds to lose it</u>
 - Night vision can be impaired by pressure altitudes > 5,000ft, carbon monoxide, Vitamin A deficiency
- Empty Field Myopia (Nothing to focus on)
 - Causes focus on a point slightly ahead, resulting in poor scanning
 - How to prevent/minimize:
 - ✓ *Day*: Force eyes to focus *further ahead*
 - ✓ *Night*: Force eyes to focus on <u>distant light sources</u>
- Other Physical health impact: medicines, fatigue, hypoxia, etc

7. Controlled Flight into Terrain (CFIT)

- CFIT: unintentional collision with terrain or obstacle while an aircraft is under positive control
- Approximately 40/year (most during the day in visual conditions) → a relevant portion involving Wire Strikes
- Common Causes
 - Poor decision making
 - Low flying aircraft
 - Distractions and loss of Situational Awareness
 - Inadequate preparation or Improper operation
 - Marginal weather conditions

How to Avoid

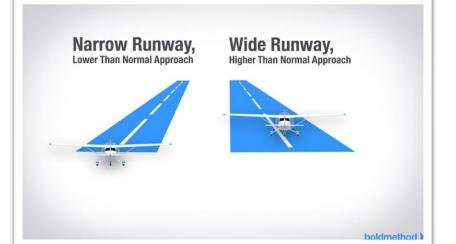

- Training: particularly use of simulators when going to unfamiliar area
- o <u>Plan ahead</u> (take obstacles in consideration)
- o Maintain Situational Awareness
- o Avoid Marginal Weather
- o <u>TAWS</u> (Terrain Avoidance and Warning System) if equipped
- Use Foreflight's "Hazard Advisor" and the "Profile View"



8. Spatial Disorientation & Illusions

Vestibular Illusions

- Leans: pilot levels after prolonged turn and thinks it is now turning opposite
- Coriolis: movement of head (looking down on iPad and up, gets disoriented)
- Graveyard Spiral: the Leans causes pilot to return to turn, loses altitude, pitch up
- Somatogravic: <u>acceleration feels climbing</u>, decelerations feels descending.
- **Inversion**: change from climb to straight/level <u>feels tumbling backwards</u>
- Elevator: <u>updraft</u> causes the pilot to pitch down



8. Spatial Disorientation & Illusions

Visual & Optical Illusions

- False Horizon: <u>attempt to align the aircraft</u> with sloped terrain, clouds or lights
- Autokinesis: in the dark, a <u>stationary light may appear to move</u>
- Runway Width: <u>narrower runway appears high;</u> wider runway appears low
- Runway Slope: <u>upslope appears high;</u> download appears low
- Featureless Terrain ("Black Hole"): the aircraft <u>appears to be higher</u> than it is
- Rain: illusion of being at a <u>greater altitude</u> (water refraction, horizon appears low)
- Haze: makes it appear of being at <u>greater distance</u>
- Fog: illusion of <u>pitching up</u>
- Ground lighting: other lights <u>can be mistaken for runway/approach lights</u>



9. Real Cases

2022, North Las Vegas (KVGT, Class D)

Piper Malibu aligns to the wrong runway and collides w/ a C172 on final - 4 people (fatal)

2022, Maryland Pilot hits powerlines Approaching too low 2 people, serious injury

2021, Centennial Airport, CO (KAPA, Class D) Cirrus crosses rwy centerline and hits a Key Lime Air (Metroliner) - 2 people, no injuries

2021, Georgia Pilot hits powerlines 1 people, some injury

Fabricio Simoes, CFI 🚽 westflying

Questions?

